2 research outputs found

    Optimal fuzzy proportional-integral-derivative control for a class of fourth-order nonlinear systems using imperialist competitive algorithms

    Get PDF
    The proportional integral derivative (PID) controller has gained wide acceptance and use as the most useful control approach in the industry. However, the PID controller lacks robustness to uncertainties and stability under disturbances. To address this problem, this paper proposes an optimal fuzzy-PID technique for a two-degree-of-freedom cart-pole system. Fuzzy rules can be combined with controllers such as PID to tune their coefficients and allow the controller to deliver substantially improved performance. To achieve this, the fuzzy logic method is applied in conjunction with the PID approach to provide essential control inputs and improve the control algorithm efficiency. The achieved control gains are then optimized via the imperialist competitive algorithm. Consequently, the objective function for the cart-pole system is regarded as the summation of the displacement error of the cart, the angular error of the pole, and the control force. This control concept has been tested via simulation and experimental validations. Obtained results are presented to confirm the accuracy and efficiency of the suggested method. © 2022 S. Hadipour Lakmesari et al

    Fuzzy logic and gradient descent-based optimal adaptive robust controller with inverted pendulum verification

    No full text
    This paper develops an adaptive robust combination of feedback linearization (FL) and sliding mode controller (SMC) based on fuzzy rules and gradient descent laws. The new suggested control algorithm is tested to stabilize a fourth-order under-actuated nonlinear inverted pendulum system. More precisely, the reliable feedback linearization approach and the robust SMC controller are combined to design a stable control effort. In order to enhance the performance of the suggested controller, an adaptation technique as long as fuzzy rules are applied to update the control gains and the boundary layer parameter. Then, a novel evolutionary algorithm termed multi-objective ant lion optimizer (MOALO) is implemented to determine the control coefficients. The analysis and results conducted on the inverted pendulum system demonstrate the desired performance of the proposed control scheme by providing an optimal smooth control input, suitable tracking performance, and proper time responses. © 2021 Elsevier Lt
    corecore